A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide **Fei Liu^{1,2}**, Bryan N. Duncan, Nickolay A. Krotkov, Lok N. Lamsal, Steffen Beirle, Debora Griffin, Chris A. McLinden, Daniel L. Goldberg, and Zifeng Lu ¹Universities Space Research Association (USRA), GESTAR, Columbia, MD, USA ²Goddard Space Flight Center, Greenbelt, MD, USA email: fei.liu@nasa.gov Liu, F. et al.: A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-521, in review, 2019. ### Why don't we estimate CO₂ emissions directly? #### Bottom-up approach: ``` CO_2 \text{ emiss}_{[TgCO_2]} = (activity_{[MMBtu]})(C_{coeff,[TgC/QBtu]})(oxid fact.)(44/12)(1 \times 10^{-9}) ``` - ✓ physical amount of fuel consumed multiplied by the heat content of the fuel; referred to as "heat input" - ✓ carbon coefficient of each fuel: the amount of carbon released per unit of fuel energy consumed - ✓ oxidation factor: the fraction of carbon that is oxidized during combustion #### Uncertainty of bottom-up CO₂ emissions #### Difference between EPA and EIA CO₂ emissions average absolute relative difference between EPA and EIA CO₂ emissions reported for individual power plants for 2004 - Both the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency (EPA)'s eGRID database report CO₂ emissions for individual power plants in the US - EIA emissions are based on fuel data - EPA eGRID uses 3 monitoring methods: stack measurement, calculation from fuel data, or a combination of the two methods - Estimates that are based partly or entirely on monitoring of stack gases (EPA) differed significantly from estimates based on fuel consumption (EIA). #### "direct" CO₂ emissions estimates #### Bottom-up approach: ``` CO_2 \text{ emiss}_{[TgCO_2]} = (activity_{[MMBtu]})(C_{coeff,[TgC/OBtu]})(oxid fact.)(44/12)(1 \times 10^{-9}) ``` - ✓ physical amount of fuel consumed multiplied by the heat content of the fuel; referred to as "heat input" - ✓ carbon coefficient of each fuel: the amount of carbon released per unit of fuel energy consumed - ✓ oxidation factor: the fraction of carbon that is oxidized during combustion #### Top-down approach: ✓ Satellites provide retrievals of CO₂ vertical columns in terms of the CO₂ column-averaged dry-air mole fraction, denoted by XCO₂ #### using XCO₂ to quantify emissions #### XCO₂ from OCO-2 - None of the existing satellite CO₂ sensors has been designed to monitor anthropogenic CO₂ emissions - There is only a very small number of good OCO-2 overpasses for a given power plant (best case: 17 overpasses out of 2-year data) - Estimating annual emissions requires multiple clear-sky revisits in a given year, which is likely not possible to obtain routinely from a single LEO mission # "indirect" CO₂ emissions estimates: methodology - E_{CO_2} and E_{NO_x} represent the satellite-derived ${\rm CO_2}$ and ${\rm NO_x}$ emissions, respectively. - Ratio represents the ratio of NO_x to CO₂ emissions for power plants #### Infer NO_v emissions based on OMI NO₂ observations: Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.: NO_x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations, Atmos. Chem. Phys., 16, 5283–5298, doi: 10.5194/acp-16-5283-2016, 2016. #### The ratio of NO_x to CO₂ for the US power plants - NO_x emission factors vary by coal type, firing type, and emission control device type - For power plants installing post-combustion NO_x controls (i.e., selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR)), NO_x emission factors vary widely, as NO_x removal efficiency is plant-specific #### The ratio of NO_x to CO₂ for the US power plants #### EPA's eGRID CEMS NO_x vs CO₂ - Only power plants without installing post-combustion NO_x controls are considered - Calculate NOx/CO₂ emissions by coal type - CO₂ emissions show linear correlation with NO_x emissions ratio of NO_x to CO₂ emissions by coal type #### Investigated power plants - We chose these plants based on $E_{NO_x}^{CEMS}$ (i.e., > 10 Gg/yr in 2005) and relative isolation from other large sources to avoid contamination of a power plant's NO_x plumes by NO_x from other sources. - From all US coal-fired power plants, we selected 21 power plants for estimating $E_{NO_x}^{Sat}$. - we are able to estimate $E_{NO_x}^{Sat}$ for 8 of the 21 plants. #### CO₂ emissions based on OMI-based NO_x emissions - The comparison shows a correlation, R², of 0.66 - relative difference for individual 3-year means (defined as $(E_{CO_2}^{Sat} E_{CO_2}^{CEMS})/E_{CO_2}^{CEMS})$ is 8% ± 41% (mean ± standard deviation) #### Case study in South Africa - Matimba uses subbituminous coal - Use the ratio ranging from 2005 $ratio_{regressed}^{CEMS}$ to 2005 $ratio_{regressed}^{CEMS}$ + standard deviation for subbituminous coal to infer $E_{CO_2}^{Sat}$ based on $E_{NO_x}^{Sat}$, because the power plant is not equipped with any NO_x control devices, even low-NO_x burners which are widely installed in US power plants #### Take home messages The NO_x-to-CO₂ emissions vary by coal types The OMI-based CO₂ emissions for the US power plants show reasonable agreement with EPA CEMS measurements The approach shows the capability to provide constraint on CO₂ emissions for regions outside the US #### Can we infer CO₂ from NO₂? # NO₂: the co-emitted species of CO₂ The mean XCO₂ anomalies match the spatial distribution of the mean NO₂ tropospheric columns observed by OMI #### CO₂ emissions based on OMI-based NO_x emissions - Quantify NO_x emissions based on the averaged OMI NO₂ TVCDs averaged over 3 years - Quantify CO₂ emissions based on the ratio of NO_x to CO₂ derived from the CEMS measurements ## **Application** ### Trend of the ratio of NO_x to CO₂ • The ratio is changing gradually driven by the improved performance of the NO_x combustion controls #### Adjusted ratio $$ratio_{i,y}^{CEMS-Estimated} = ratio_{regressed,i,y}^{CEMS} \times (1 - f_y)$$ - Techniques used to reduce NO_x emissions are classified into two fundamentally different methods: combustion controls (e.g., low NO_x burners) and post-combustion controls (i.e., selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR)) - $ratio_{regressed,i,y}^{CEMS}$ represents the ratio of NO_x to CO₂ emissions for power plants before plumes go through SNCR/SCR - For units installing post-combustion controls, NO_x/CO₂ emissions vary widely - f represents the removal efficiency of the post-combustion NO_x control system. If no post-combustion technique is applied, f is set to zero. #### Estimate the CO₂ emissions for power plants installing postcombustion control devices We select all units using post-combustion controls in 2016, but not in 2005, to demonstrate the approach For power plants using postcombustion controls: - NO_x reduction efficiency is derived from EPA's eGRID database - Estimate unabated NO_x emissions based on CEMS NO_x emissions - CO₂ emissions based on the regressed ratio of NO_x to CO₂ emissions are consistent with the CEMS CO₂ emissions ### NO_x emissions based on OMI NO₂ columns Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.: NO_x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations, Atmos. Chem. Phys., 16, 5283–5298, doi: 10.5194/acp-16-5283-2016, 2016. ### NO_x emissions based on OMI NO₂ columns Use the NO₂ distribution for calm wind conditions C(x) as proxy for the spatial distribution of NO_x sources model function: $$N(x)=a(e\otimes C)+b$$ • E= total mass / lifetime Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.: NO_x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations, Atmos. Chem. Phys., 16, 5283–5298, doi: 10.5194/acp-16-5283-2016, 2016. # Uncertainty of XCO₂ - Satellites provide retrievals of CO2 vertical columns in terms of the CO2 column-averaged dry-air mole fraction, denoted by XCO2 - Existing or planned satellite instruments for measuring greenhouse gases with high near-surface sensitivity such as SCIAMACHY on ENVISAT or TANSO on the Greenhouse Gases Observing Satellite (GOSAT) aim primarily at providing additional constraints on natural CO2 sources and sinks. None of the existing satellite CO2 sensors has been designed to monitor anthropogenic CO2 emissions - The capacity of GOSAT and OCO-2 observations to detect anthropogenic CO2 emissions from point sources is limited